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Variational principles in the linear theory of viscoelasticity*

by
M. E. Gurtin
Brown University

1. Introduction

The object of thlis paper is to supply generalizations to
linear quasi-static viscoelasticlity theory of certain variational
princlples which characterize the solution of the mixed boundary-
value problem of classical elastostatics. This problem consists
in finding a "state" - i1.e. a displacement, strain, and stress
fleld - which satisfles the governing field equations in a given
region of space and meets the standard mixed boundary conditions.
The relevant field equations consist of the displacement-strain
relations, the stress-strain relations, and the stress equations
of equilibrium; whereas the boundary conditions involve the pre-
scription of dlisplacements over a portion of the boundary and of
surface tractions over the remainder.

Two of the most important variational principles applica-
ble to the foregoing problem are the principle of stationary
potential energyl and the principle of stationary complementary
energy.t+ The former asserts that the variation of the "potential

energy" over the set of all kinematically admissible states2 is

The results communicated in this paper were obtained in the
course of an investigation conducted under Contract Nonr-562(25)
of Brown University with the Office of Naval Research in
Washington, D. C.

See, for example, Sokolnikoff [1](Articles 107, 108). If the
elastlic constants are such that the strain energy density is a
positive definite function of the strains then these variational
principles imply corresponding minimum principles.

By a kinematically admissible state we mean a state that
satisfies the displacement-strain relations, the stress-strain
relations, and the displacement boundary conditions.
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zero at a certaln state 1f and only 1f that state i1s a solution
of the mixed problem under consideration.

On the other hand the principle of stationary complemen-
tary energy asserts that the variation of the "complementary
energy" over the set of all statically admissible stress fieldss_
is zero at a certain stress fleld if that stress fleld belongs to
the solution of the mixed problem. Southwell [2] and Langhaar [3]
proved a converse of this theorem on the assumption that the trac-
tions are prescribed over the entire boundary and the region is
simply connected: the variation of the "complementary energy"
over the set of all statically admissible stress flelds is zero
at a stress fleld only if that stress fileld belongs to the solution
of the problem at hand. For the case in which displacements are
prescribed over a portion of the boundary a similar converse
follows from a slight modificationu of a theorem due to Dorn and
Schild [4].

various extenslions of the preceding variational principles
of elastostatics have been established in which the class of
admissible states is subjected to weaker restrictions. One exten-
sion of this kind was given by Hellinger [5] and was later independ-

ently discovered in a somewhat stronger form by Reissner [6],[7].

37By a statically admissible stress field we mean a stress fleld
that meets the stress equations of equilibrium as well as the
traction boundary conditions.

See Section 4 for a statement and proof of the modified theorem.
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This principle asserts that the variation of a certain functional
over the set of all states which meet the strain-displacement
relations 1s zero at a particular state if and only if that state
is a solution of the mixed problem. Apparently guided by
Reissner's improved version of Hellinger's theorem, Hu Hal-chang
[8] and Washizu [9] separately arrived at a still broader varia-
tidnal principle which does not require the admissible states to
meet any of the fleld equations or boundary conditions.

This paper aims at variational princibles for linear
viscoelasticity which generalize the foregoing results of classical
elastostatics. Although variational principles for viscoelastlcity
theory were considered previously by Biot [10], Freudenthal and
Geiringer [11], and Onat [12], these 1nvestigétions do not arrive
at generalizations of the type sought here.

The present paper is a continuation of a recent study
[13] which contains a systematic treatment of linear viscoelastic-:
1ty.theory based on the notion of a Stieltjes convolution.

Section 2 contains certain preliminary definitions and
notational agreements. In Section 3 variational principles
appropriate to the linear quasi-static theory of viscoelastic
solids are given for the case in which the stress-straln relations
are in relaxation integral form. Section 4 is devoted to the
derivation of analogous results for stress-strain relations in
creep integral form. In the varliational principles established
here the viscoelastic solid is allowed to be inhomogeneous and
anisotropic and the relevant stress, strain, and displacement
histories are permitted to possess finite jump discontinuities in

tine,
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2. Notation. Preliminary definitions.

Throughout what follows R will denote an open region of
three-dimensional Euclidean space with the closure R and the
boundary B. Further n will denote the unit outward normal to B
and B, (a=1,2) will denote complementary subsets® of B (B = BlL)Bz,
Blf)B2 = 0). Finally, the symbol "%" will be used to indicate the
cartesian product of two sets.

Let ui’eij’dij’Fi’Gijkﬁ’ and JiJkﬂ’ in this order,
designate the carteslian components of the displacement vector u,
the straln tensor g, the stress tensor ¢, the body force (density)
vector F, the relaxation tensor G, and the creep tensor J. All of
the preceding field histories, including G and J, are to be
regarded as functions of position and time defined on R¥(-wm, o).
With this notation the complete system of field equations in the

linear quasi-static theory of (inhomogeneous and anisotropic)

viscoelastic soclids take the form6
2ey4 = u gt uy; 4 on RX(-00,00), (2.1)
51JJJ+F1=0, G434 = 04y onN RX(-o00, 00), (2.2)
and elther
o4 = Gijlo@‘_'deld on Rx(- oo, 00), (2.3)
or
€15 = Iy gip*d0yy oD Rx( - 00, 00) , (2.4)

> Henceforth the subscript a will be understood to have the range
of the integers (1,2).

We use the usual indicial notation. Thus Latin subscripts have
the range of the integers (1,2,3) and summation over repeated
subscripts 1s implied; subscripts preceded by a comma indicate
differentliation with respect to the corresponding cartesian
coordinate.
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Equations (2.1) are the linearized strain-displacement relations,

(2.2) are the stress equations of equilibrium, (2.3) represent the

stress-strain relations in relaxation integral form, while (2.4)

represent the stress-strain relations in creep integral form. In

writing (2.3), (2.4) we have made use of the notation for Stieltjes
convolutions introduced previously in [13]. Thus, if £ and g are
functions of position and time, f#dg stands for the function
defined by the Stieltjes integral
t
[£ragl(x,t) = f £(x,t-7)dg(x,1), (2.5)
) T==~00

provided this integral is meaningful. To the system of field

equations Jjust cited we adjoin the initial conditions

u=¢g=g=0 on Rx(-oo,0), (2.6)

the displacement boundary conditions

u=3 on le("ooa o), (2.7)

and the traction boundary conditions

S=8§ on Bzx(-co, o) . (2.8)

In (2.8) S is the surface traction vector with components Si=°13n3'
while ﬁ and‘§ are prescribed functions.

The mixed boundary-value problem thus consists in finding
field histories u,e,d which, for given R,By, known @ [or J], and
prescribed F,4,8, satisfy (2.1), (2.2), (2.3) [or (2.4)], (2.6),
(2.7), (2.8). We will let 8=9(R,Ba,§_,_§_,§,g) denote the fore-

going problem for the case in which the stress-strain relations
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are in relaxation integral form - i.e. (2.3) holds. On the other
hand, if the stress-strain law is given in the creep integral
form (2.4), we will denote this problem by 9 =§«(R,Ba,ﬁ,_§_,_F_,g).
In order to avoid repeated regularity assumptions con-
cerning the data we define a ~
Regular problem. We say that 9=(9['(R:BGQP::§:E:Q) is a regular
problem of relaxation type if: v e

(a) R is a bounded region, its boundary B consists of a finilte
7

number of non-intersecting closed regular surfaces,’' and

the subsets Ba are regular surfaces;

(b) (1) & 1s a vector-valued function defined on B, X(-o0o, o)

which vanishes on B;x(-00,0) and is uniformly continuous
on le[oa'r] (0 < T < o);

which vanishes on B,X(-,0) and is uniformly continuous

on BQ'X[O,T] (0 < t < ) for every regular surface element
!

BaCB H

(111) P is a vector-valued function defined on RX(-oo, co)

which vanishes on Rx(-c0,0) and is uniformly continuous

on Fx[0,7] (0 <t < ),
(c) @ is a fourth-order tensor-valued function (of position

and time) defined on Bx(-co, c0) which vanishes on Rx(-c0,0),

is continuously differentiable on Rx[0, o), and has the

symmetry properties
Gy g8 = Oyqp = Gpgy OB Rx(-oc0,00). (2.9)

TSee Kellogg [14] for the definition of a closed regular
surface and the definition of a regular surface element.
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We say that 9- Q(R.Ba,ﬁ,&.m) is 2 regular problem of creep
type if (a),(b),(c) hold with G replaced by J.

Condition (1) in (b) is equivalent to the requirement
that @ coincide on B;x[0,7] with a function continuous on the
closure of le[o,tj. The analogous comment applies to (111) in
(v). Iflé is the brescribed boundary traction of a problem and
d 18 the stress tensor of the corresponding solutlion then
§i = 0,40y o0 B2X[0,°°). This motivates condition (1ii) in (b)
since n has finite jump discontinuities on Bz, but not on any
regular surface element BéCLBa-

The first of the symmetry relations appearing in (2.9)
is a direct consequence of the symmetry of the stress tensor.
The second of (2.9), for the special case of an isotropic s0lid,
follows automatically from the condition that the values of @
be 1sotropic. For the general anisotropic solid this second
symmetry relation constitutes an independent assumption.8

Our main objective 18 the characterization of the
solution to the foregoing boundary-value problem by means of
variational principles. It thus becomes essential to spell out
precisely what we mean by a regular solution to the problem. To
this end we first give the following definition of an
Admissible state. We say that the ordered ;t‘.gg_a_.xx = [u,e,0] 18 an
admissible state on Rx(-oco, o) 1if: '.

© Theoretical support for this assumption has occasionally been
based on thermodynamic arguments involving an appeal to
Onsager's principle. See Rogers and Pipkin [15] for a
discussion of this issue.
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(a) u is a vector-valued function defined on Rx(- oo, o), while

g and ¢ are symmetric second-order tensor-valued functions

defined on RX(- oo, o) ;

(b) u,e,0 vanish on Rx(-0,0) and are continuously differentiable

on Rx[0,00).

Note that an admissible state 18 allowed to have finilte
jump discontinuities at the time origin and need not meet (2.1),
(2.2),(2.3), or (2.4). Addition of states and multiplication of

a state by a scalar are defined by
3+ = [utb,e+€,0+461 , ad = [au,ae,a8]. (2.10)

In view of (2.10) the set of all admissible states on RX(-oo, o)

1s a linear space.9

We are now ready to introduce the notion of a

Regular solution. Let (J= %J(R,Bu ,8,5,F,08) be a regular problem
of relaxation type. Then we say that /8= [u,e,0] is a regular

solution of (}if:

¥ GV e rtam—  ctaa—.——

satisfy the boundary conditions (2.7),(2.8).
Let =(?/(R,Bu,l_'i_,_§_,§,g) be a regular problem of creep type.
Then we say that X = [u,e,0] 18 a regular solution g_f_g it (a),

(v) hold with (2.3) replaced by (2.4).

9 See, for example, Taylor [16] for the definition of a linear
space,
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Clearly a regular solution is allowed to possess finite Jjump
discontinuities at time zero.
Next we define the

T . —————————— T G T ———————— I ————————  r——

a subset K of a linear space L. Let

gg L ,/gmj €K for every real number a , (2.11)

and formally define the notation
d ~
ngQ{z} = & ef+a3} o - (2.12)

We say that the variation of Qf-} is zero at ,X and write

5Q{3} = 0 over K (2.13)

whenever 3 .Q{f} exists and equals zero for every choice of }

consistent with (2.11).

Unless otherwlise specified, the underlying linear space
L for the varlational principles proved in this paper will be
the set of all admissible states on RX(-co, o),

Finally, we will consilstently write S and § for the

traction vectors with components

~

d..n (2.14)

respectively.
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3. Varliational principles for problems of relaxation type.

We begin with a generalization of the theorem due to

the Hu Hai-chang [8] and Washizu [9] mentioned previously.

First variational principle. Let %=%(R,Ba,ﬁ,§,g,(_}) be a
regular problem of relaxation type. Let K be the set of all

admigsible states on Rx(- o, ), Let /g = [u,e,6]€ K and for
each fixed t ¢ (-oo, ) define the functional A.{-} on K through

[Gmkz*de“fdeu]_(g,t)dvﬁ -i[ [oija_ode”](g,t)dvﬁ

R
_L [(diJ’Jd-Fi)fdui](;_:,t)dVE +J]; [simﬁi!(_:g,t)dAE

1
+d [(8,-5,)au, 1(x,t)an, . (3.1)%°
N , P
Then
bAt{X} =0 over K (-o0¢ t < o) (3.2)

if and only if /9 is a regular solution of Caf .
Proof: Let§ = [9,2,5]€ K from which 1t follows that S+aj¢ K.
Then by (2.12), (2.9), Theorems 1.2 and 1.6 of [13], and the

symmetry of ¢

10ye write dV, and dA_ for the volume element and element of

area, respectively, to indicate that x is the variable of
integration.
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bXAtw} =

[(Gijkl*dekﬂ'dij)*dgi,j ](_:_c_,t)dvz +

0w e—— ——

[(cs“,J+1v.i-i)§dfi1].(_:5,1-,)dv?£ +

- [eyy-dluy sruy 4))eds, j1(x, t)av, +

o

+£ [(D,-u, )=a8, I(x,t)an, +
X : P

+£;mf§nwggwm§ (cwctcw).  (3.3)

First suppose /X is a solution of ? . Then by virtue of (2.1),
(2.2),(2.3),(2.7),(2.8), equation (3.3) becomes

bgl\.t{/g} =0 over K (-o0¢ t ¢ o). (3.4)

Equation (3.2) now follows from (3.4) sincej ¢ X was chosen
arbltrarily.

Now turn to the "only if" portion of the proof. We
must show that ,8 is a regular solution of ? whenever XGK and
(3.4) holds for every X ¢ K. In particular choose

ix,t) = u'(x)n(t), 2(x,t) = ¢ ' (Xn(t), 3(x,t) = ¢' (x)n(£)(3.5)

for every (x,t)C Bx(-oo, ), where h is the Heaviside unit step
function, 1.e. h(t) = 0 (-0 ¢ ¢t < 0), h(t) =1 (0 ¢ t ¢ o).
Therefore (3.4), by virtue of (3.3) and Theorem 1.2 in [13],

becomes
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'l[( [Gijldfdakﬁ"’ij](-’E’t)eij(-’s)dv_g - J}; [°1J,3+F11(-J—"t)u;(§)dv_:g +
- ,£ [e:‘_J-i-(ui"J+'a.J.:J’:‘_)](_Jg,‘l:)c!:;_‘j(§)dV2S +

+ J};l [ﬁi'ui](-’S:t)":{J(E)nJ(')S)dAE *

+ IBa [31'3’1](-’5"5)“;(3‘-)0“‘;:_ =0 (-go < t < o) (3.6)

1 ] 1 !
and (3.6) must hold for every u ,e ,6 continuously differentiable
-— t $
on R with ¢ and ¢ symmetric. But this fact, the fundamental
lemma of the calculus of variatlons, and the symmetries of

)
8,£,0 imply that ) meets (2.1),(2.2),(2.3),(2.8) and that

Lx [ﬁi-ui](zat)dij(z)nj(_&)df\x =0 (-00<t <), (3.7)

Now assume there exists a regular point _Jgoe‘ Bl such that
u(x%,t) # 1(x°,t) which implies uk(gc_o,t) # ﬁk(gc_o,t) for some
(fixed) k. Choose the coordinate frame such that nk(go) #£ 0,
let £ be continuously differentiable on R, and let ,
di'J(;_c) = bikbjkf(-’s) (no sum). Then, since (3.7) must hold for
every such g_', [uk(g,t) - ﬁk(gc_,t)]nk(gg) = 0 (no sum) for every
(x,t)€ le(-OO, ) with x regular, which implies uk(zo,t) =
ﬁk(_Jgo,t) . Consequently, we have a contradiction and hence
u(x,t) = 4(x,t) for every (x,t)c le("°°-’ o) with x regular.
Thus and by the continuity of u and 1, (2.7) holds as well and
2 18 a solution of ? This completes the proof.
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By virtue of the dilvergence theorem, A, admits the

alternative representation

At{/X} = %—£ [Gijszdeijfdekz](g,t)dvi - i:[t[diJ*d(eid-u%J)](;"t)dv_is+

- Jrl [Fi*duil(;g,t)dvgs - £ [Si*d(ui-ui) ]dA_JS +
1 .
- I [31*dui](§,t)dA§ . (3.8)
Ba'
If, in addition to merely being admissible, /X = [u,e,0] meets
(2.1),(2.3), and (2.7), then Atgﬁ} given by (3.8) reduces to
Qt{/g}, where

@t{,X} = %£ [Gidk’efdeidfdekzl(gc_,t)dvg - L[Fi*duil(_qc_,t)dvﬁ +

_ j [8,%au, 1(x, t)an, . (3.9)
By
Thus we are led to the following generalization of the principle
of stationary potential energy.
Second variational principle. Let Cj= 9(R,Ba ,0,5,F,8) be a
regular problem of relaxation type. Let K be the set of all

admissible states on Rx(-co0,c0) which meet the strain-displace-

ment relatlons (2.1), the stress-strain relations (2.3): as

well as the displacement boundary conditions (2.7). Let

/X= [u,e ,0 1€ K and for each fixed t € (-o0,c0) define the func-

tional &, {-} on K through (3.9). Then

th{/g} =0 over K (-00< t < o) (3.10)
if and only if /8 is a regular solution of G .
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Proof: The "if" portion of the proof follows at once from the

first variational principle and the discussion preceding (3.9) .

To establish the remainder of the theorem assume
8 t{/g} =0 over K (-oo <t < o) (3.11)

for every5 which meets (2 11) This latter condition 1s
equivalent to the requirement that ,X be admissible and meet
(2.1),(2.3), with

fi=0 on le(-oo, o) . (3.12)

Clearly, (3.3) holds if we replace At{/X} by @t{/X} and omit the
first, third, and fourth terms, since /f meets (2.1),(2.3),
(2.7). Now choose u(x,t) = _g'(_zg)h(t) for every (x,t) in

Rx(-00, o), where h is the Heaviside unit step function and g'

is twice continuously differentiable on ﬁ, with
1
u =0 on B . (3.13)

Next define continuously differentiable functions €, on R

through (2.1),(2.3). Thus and by (3.11),

- Jtoyy, #7110 tuy (s)av + f (5, -8, )(x, t)uy (x)aa, = 0
"2 (-0 <t <o0)(3.14)
for every function y._' wlth the foregoing properties. But this
fact, by virtue of the fundamental lemma of the calculus of
variations, implies tha.t,,g meets (2.2),(2.8) and the proof 1is

complete.

11 Recall our reement that L is the set of all admissible
states on R a%
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4, Variational pfinciples for problems of creep type.
The following theorem is a generalization of the

Hellinger-Reissner principle in linear elastostatics.

Third variationsl principle. Let y=9(R,Ba,ﬁ,§,Lg_) be a
regular problem of creep type. Let K be the set of all admissible

states on Rx(- oo, co) which meet the strain-displacement relations

(2.1). Let 4§ = [u,e,0]€K and for each fixed t ¢ (-oo, oo) define
the functional ©._{.} on K through

Gt{,X} = i [dij*deij](_&:t)dvﬁ - % i [Jiju*ddij*ddke](gg,t)dvé

- i'; [1='1*du1](5,1:)dv_JS - ].L [Si*d(ui-ﬁi)](_l_c,t)dAgs

1
- | 18000, 1m 100, . (#.2)
s x
Then
20, {J} =0 over K (-o< t < ) (4.2)

if and only if § is a regular solution of 9« .

Proof : Letj = [§,£,8] meet (2.1]_).12

Then from the definition
of K and since J¢K, we have that 4 € K. Consequently, because

of Theorems 1.2 and 1.6 of [13],

bget{/X} = i [(eiJ-JUkzi.t-ddkz)*daiJ](_Jg,t)dvﬂ

- l'£ [(om,J+F1)afdﬁ1](_Jg,t)dvzS + il[gi'd'('ﬁi'ui) ](gt'.)dA_JS

Ll e, Cececw). @)
. (x,vany

12

See the previous footnote.
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The conclusion now follows from (4.3) by an argument which is
strictly analogous to that which led from (3.3) to the final
conclusion in the proof of the first variational principle.

We turn next to a generalization of the principle of
stationary complementary energy in elastostatics., With a view
toward an economical statement of this generalized principle we
introduce the subsequent notions.

Convexity of R with respect to B,. We say that R is convex with

respect to B, if the straight line

x(t) =%+ (X-X)t (-©< T < ) (4.%)

intersects B only at X and X whenever X, X € B..
Notice that if B = 32 then R is automatically convex with
respect to Bl'

Admissible stress field. We say that ¢ 1s an admisaible stress

field on Rx(-oco, ) if ¢ 18 a symmetric second-order tensor-

valued function defined on Rx(- oo, ), which vanishes on

R%(~00,0) and is continvously differentiable on Rx[0,0).

Finally, we stipulate that the underlying linear space
L for the following theorem is the set of all admissible stress
fields on Rx(- oo, o),

Fourth variational principle. Let g = 9«'(R,Ba,_?_1,_§_,§,g_) be a
regular problem of creep type. Let K be the set of all admissible

gtress-fields on RX(-co, ) which meet the stress equations of
equilibrium (2.2) and the traction boundary conditions (2.8).

Let ¢ ¢ K apd for each fixed t € (-oo, o) .define the functional
2.{-} on K through
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‘Pt{g} = % _l’;[JiJk‘e*ddiJ*ddul(ﬁ,t)dVE - £1[81*dﬁil(_x,t)dA£. (4.5)
Then

32, {d} =0 over K (- <t < o) (4.6)

if there exist functions u,e such that [u,e,d] 18 a regular
solution of 9 . ‘
Conversely, suppose
(a) R is convex with respect to By
(b) R is simply-connected;

(c) J and ¢ are twice continuously differentiable on Rx[0, );

(8) ﬁ(_}g, +), for each X€B,, is continuously differentiable on
[0, ) ;

(e) (4.6) holds.

Then there exist functions u,e such that [u,e,s] 1s a regular

solution of 9, . -

Proof: Let g¢L, otad (K for every real a. Then

SiJ,J =0 on RX-o0, ), )

S, Ed,.n

N 18y =0 on Bax(-oo,OO).

Further, since Jijkl = Jkﬂij’ it follows that

"g‘% o} = i[JiJu*doM*d8ij](_;g,t)dv§ - lj;l[§1»c1{ii](gc_,t)dm_Js

(-0 <t <00).(4.8)

Now suppose there exist functions u and ¢ such that [u,e,0] 1s
a solution of . Then, by virtue of (4.7) and the divergence
theorem, equation (4.8) implies
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bft{g} =0 (-0< t< ), (4.9)

Thus, and since d was chosen arbitrarily, (4.6) holds.

We turn next to the proof of the converse assertion.
To this end we state and prove the following trivial modification
of a theorem due to Dorn and Schild [4].
Lemma. Let R be simply-connected and convex with respect to B,.
et

t
i

be a vector-valued function which is uniformly continuous

on B, and let e be a symmetric second-order tensor-valued func-

tion which is twice continuously differentiabie on K. Further
suppose

| oy yt@ey man, - [ @i @ney (o)

for every symmetric second-order tensor-valued function ¢ which

1s continuously differentiable arbitrarily often on R and meets

%3,0=° &F } (4.11)
oijn.j =0 _o__nB2 .

Then there exists a vector-valued function u which 1s continuous-

1y differentiable on R and satisfies

2¢ on R

13 =%, %, (4.12)

4y =y on B

Proof: Here we follow the argument of Dorn and Schild. Let g

be a symmetric second-order tensor-valued function which is
continuously differentiable arbitrarily often on R and which
vanishes identically outside a closed subregion of R. Let Yy 5k
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denote the usual alternating symbol and define g through

di.j = YiquJrsgpr,qs on R, (4.13)

i1.e. use g as a Gwyther-Finzl stress function.l3 This choice
of ¢ meets (4.11), has the requisite degree of smoothness, and

vanishes on B. Therefore (4.10) implies

‘E[eiJYiquJrsgpr,qsdv =0, (4.14)

Now integrate (4.14) twice by parts and use the fact that & and
all of 1its partlal derivatives vanish on B to deduce that

i(YiquJrseiJ,qs)gprdv =0. (4.15)
Since (4.15) must hold for every such function g

v =0 on R. | (%.16)

piq'rysf13,qs

Hence ¢ 1s a compatible strain fileld and from the simple-
connectivity of R we conclude that there existsa vector-valued

L ]
function u which is continuously differentiable on R and meets

2, ., =u ,+u. R (4.17)
EIJ - ui,J J,i On . .
Moreover, such a _1_1_ 1s given by the line 1ntegralslu
X
1(x =J_ (_E__,_:_c_)dE.j for every x¢cR , (4.18)
x°

where x°C R and for every (§,x)€ KxR

13 See, for instance, Truesdell and Toupin [17] (Article 227).

1k See, for example, Sokolnikoff [1] (Article 10).
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Uy 5(Box) =€, (B) + (5 gy ) [eyy o (B) - e)y 4(B)]. (H.29)

Now let

a ]
vy =u; -u on B (4.20)

and use (4.10),(4.11),(4.12), together with the divergence
theorem, to establish that

LoiJnJvidA =0 . (4.21)

Our next step will be to show that v 1s a rigid displace-~
ment field. To this end let X and X be arbitrary interior points

of Bl and choose the coordinate system such that
x = (0,0,0) , x = (O,O,i3). (4.22)

Let [ be a disc in the xl,xa-plane with radius € and center at
X =Xy = 0 and let
S 4 5(%y5%p0%3) = 8,3 4af (%),%,), (4.23)

where f, is defined on the entire xl,xa-plane and has the
following properties:
(a) fg¢ 1s differentiable arbitrarily often;
(b) fe 2 0;

’ (4.24)
(¢c) f¢ =0 outside Dg;

(a) {) £,00 =1 .
€

Clearly such a ¢ meets the first of (4.11). Now let C; be the
solid circular cylinder whose axis coincides with the x3-axis

and whose cross-section is Dz . By the assumed convexity of R
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with respect to Bl

(CeNBIC B » (4.25)

for sufficiently small ¢ (say & < eo). Thus and by (4.23),
(4.24), the second of (4.11) holds for € < €q Further for
e < € Le o there exist disjoint subregions é e,(é' e of B, such

1
that
2B, » 2€ B, » NPy =B UB,- (4.26)
Consequently, by virtue of (4.23), (4.24c), equation (%.21)
reduces to
I fov3ngdh + I foVangdh = O (e <&y). (4.27)

®
€ €
Next let m = (0,0,1) be the unit normal vector of De and conclude

from (4.23), (4.24d) that

.[ f€n3dA =J diJanA I oiJdeA = I fsdA =1,

Be Be D, De (4.28)

[, ftn@ar=| o, ndr=-] o, madAs=- £ f,dA = -1 ,
@883 IKB; 1377 ,ﬁe 1J7J .

provided € < €,. Now let &> 0 in (4.27) and use (4.24b),

(4.28) to infer that
v3(3_§) - v3(_15) = 0. (4.29)
But (4.29), because of (4.22) and since X, X were chosen

arbitrarily, implies
[w(x) - »(%)]-[x-X] =0 (%.30)

for every X, X¢ B,. Hence ¥ on B, must belong to the moment
field of a bound vector system and thus admits the representa-

tionl5

15 See, for example, Nielsen [18] (Chapter 3).
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vi(_zg) = agtuy 4X, (ai'wi.j = -wji.....constant) (4.31)
for x{ B;. Now define u on R through
ui(;_c_) = ui(g_g) toay tow X, if x€R (4.32)

and conclude from (%.17), (%.20), (4.31) that u meets (4.12).
This completes the proof of the lemma.

We turn now to the remainder of the proof of the
fourth variational principle. To this end suppose hypotheses
(a) through (e) hold. Clearly, (4.8) 1s satisfied by every
admissible stress field g which meets (4.7). In particular let

3ij(gc__,t) = dij(g)h(t) for every (x,t) € RX(-co, ). (4.33)
Next define g on Rx(-oco, c0) through
eij = Jljkz*ddkz (u-3u)

and observe that hypothesis (c) and Theorem 1.6 of [13] imply
that e vanishes on RX(- 00,0) and is twice continuously differ-
entiable on EX[0, o). Further, infer from (4.6), (4.8), (4.33),
(4.3%4) that

1 ! A
[ oy @ey le0ar = ] o (@ e tingan, (- o <o <9
1
for every ¢ ' which is twice continuously differentiable on R

and meets
t
g =0 on R
i1J,J ?
C (4.36)
diJnJ =0 on B2.
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Equations (4.35), (4.36), together with the preceding lemma
imply the existence of a displacement field u which satisfies
(2.1), (2.7). Moreover, it is clear from the smoothness of ¢,
hypothesis (d), and the proof of the lemma that u vanishes on
R%(-00,0), and is continuously differentiable on Rx[0,c0). Thus
we have shown that [u,e,0] 18 a regular solution of Q/and the

proof 18 complete.
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